Abstract

J-aggregates nanostructure proposed for realization of plasmonic manufactories like switchable localized surface resonances (LSR) due to their optical nonlinearities' properties. J-aggregates to enhancement of light-matter interaction is applied. In this regard, we propose a novel graphene/J-aggregate plasmonics coupler with subwavelength structure at telecommunication range. Utilizing device geometries and optical properties optimized for enhanced light-matter interactions lets us to harness the propagation of TM (TE) modes without the change of configuration. Here, the coupling parameters have been numerically and investigated using the finite-difference time-domain (FDTD) method. The results show that the coupling condition can be tuned by optical properties of graphene in turn leads to a tunable plasmonics coupler. It is shown that, by considering magnetic field of 0.01 T and graphene chemical potential of mc = 0.45 eV, the TM mode, and magnetic field of 0.02 T and graphene chemical potential of mc = 0.4 eV, the TE mode can be propagated in the selected ports. With the above behavior, the proposed structure may potentially be applied in telecommunication links.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call