Abstract
Nowadays, introducing self-cleaning properties on various fabrics under daylight irradiation for automotive and upholstery application is in a central point of research. This can be achieved by application of metal-doped TiO2 nano particles on the textile fabrics. Here, alkali hydrolysis of polyester fabric has been carried out along with synthesis of Cu2 O/TiO2 nanoparticles in a single-step process by using sonochemical technique. CuSO4 .5H2 O was used as a source of copper in the presence of glucose as reducing and stabilizing agent. Moreover, central composite design based on response surface methodology (RSM) was used to determine the role of variables (CuSO4 .5H2 O, glucose and pH) and their effects on the self-cleaning properties and weight of the fabric. The self-cleaning property was investigated by degradation of Methylene blue on the surface of the treated fabrics under daylight. Further, the tensile properties, colorimetric measurement, and washing fastness of the treated fabric produced in the optimum conditions were investigated. The morphology of Cu2 O/TiO2 nanoparticles was examined using X-ray diffraction and field emission scanning electron microscopy (FESEM). The new polyester fabric obtained through insitu synthesis of Cu2 O/TiO2 nanoparticles can be used as a desirable stable fabric with high tensile strength and visible-light self-cleaning properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.