Abstract

Sr3LiSbO6 phosphors were prepared by high temperature solid state reaction method. The crystal phase, morphology and optical properties were characterized by X-ray powder diffraction spectroscopy, scanning electronic microscope, absorption and photoluminescence (PL) spectra. The XRD Rietveld refinement was performed to obtain the detailed crystal structure of Sr3LiSbO6. The electronic structure was analyzed by density functional theory (DFT) calculation. Sr3LiSbO6 possessed indirect band structure and the band-gap were determined to be 3.17 eV. Self-activated far-red emissions at 630–800 nm were detected under the excitation at 340 nm, which was proposed to originate from the transition between interstitial oxygen defective state to six hybrid 4d105s0 states of Sb5+ according to the results of PL spectra of samples annealed at different atmospheres. The PL intensity can be significantly enhanced by 2.9 times after doping 2 mol% Gd3+ ions in Sr3LiSbO6. The internal quantum efficiency of Sr3LiSbO6:2 mol%Gd3+ was determined to be 25.2%. The influence of the Gd3+ doping on the self-activated PL lifetimes of Sr3LiSbO6 and the thermal quenching property of Sr3LiSbO6:2 mol%Gd3+ was studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.