Abstract
Inspired by the sliding behavior of gecko feet during climbing, the contribution of the shear effect to the self-cleaning performance of a bio-inspired micropillar-arrayed surface is studied through a load-shear-pull contact process. It is found that self-cleaning efficiency can be enhanced significantly by shear. The efficiency also depends on microparticle size. For the case of relatively large and small microparticles, self-cleaning efficiency increases first and then almost keeps a constant with the increase of shear distance at different preloads. For medium microparticles, shear can effectively improve self-cleaning efficiency only when the preload is small. The mechanical mechanism under such enhancement is mainly due to the varying contact states between microparticles and micropillars with the shear distance. When the shear distance is large enough, the final self-cleaning efficiency is not sensitive to shear distance anymore because the contact state reaches dynamic equilibrium. Based on such a self-cleaning mechanism of large microparticles, a simple and effective manipulator that can efficiently transfer solid particles is further proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.