Abstract

Enhanced and self-biased magnetoelectric (ME) coupling is demonstrated in a laminate heterostructure comprising 4 μm-thick Pb(Zr,Ti)O3 (PZT) film deposited on 50 μm-thick flexible nickel (Ni) foil. A unique fabrication approach, combining room temperature deposition of PZT film by granule spray in vacuum (GSV) process and localized thermal treatment of the film by laser radiation, is utilized. This approach addresses the challenges in integrating ceramic films on metal substrates, which is often limited by the interfacial chemical reactions occurring at high processing temperatures. Laser-induced crystallinity improvement in the PZT thick film led to enhanced dielectric, ferroelectric, and magnetoelectric properties of the PZT/Ni composite. A high self-biased ME response on the order of 3.15 V/cm·Oe was obtained from the laser-annealed PZT/Ni film heterostructure. This value corresponds to a ∼2000% increment from the ME response (0.16 V/cm·Oe) measured from the as-deposited PZT/Ni sample. This result is also one of the highest reported values among similar ME composite systems. The tunability of self-biased ME coupling in PZT/Ni composite has been found to be related to the demagnetization field in Ni, strain mismatch between PZT and Ni, and flexural moment of the laminate structure. The phase-field model provides quantitative insight into these factors and illustrates their contributions toward the observed self-biased ME response. The results present a viable pathway toward designing and integrating ME components for a new generation of miniaturized tunable electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.