Abstract

The preparation of the vast majority of nonlinear optical metal metasurfaces currently relies on complex top-down methods such as electron beam or ion beam etching, which are expensive and difficult to meet the requirement of large area preparation. In this paper, an easily prepared quasi-periodic silver dendritic metasurface model with high Q factor is established in the near-infrared band based on a simple and easy-to-operate electrochemical deposition method. The simulations prove that the silver dendritic metasurface has a high Q factor (exceeds 104) because of its strong electric field localization ability, which is analogous to the superposition of multiple split-ring resonators. It is demonstrated that the second harmonic generation (SHG) intensity of the dendritic metasurface at a large incident angle (such as 85°) is about 30 times that of the metasurface at a small incident angle when the x-polarized pump light is incident obliquely to break the centrosymmetry of the metasurface. The influences of the incident angle or dendritic structure’s dimensions on the Q factor and SHG efficiency have also been researched through a lot of simulation. This easily prepared quasi-periodic silver dendritic metasurface SHG device may provide a new avenue for the development and application of miniature, integratable nonlinear optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.