Abstract

A method to enhance sampling of a small subset of N(h) particular degrees of freedom of a system of N(h) + N(l) degrees of freedom is presented. It makes use of adiabatically decoupling these degrees of freedom by increasing their mass followed by either increasing their temperature or reducing their interaction or the force acting on them. The appropriate statistical-mechanical expressions for use of these methods in simulation studies are derived. As long as the subset of mass-increased degrees of freedom is small compared to the total number of degrees of freedom of the system, sampling of this subset of degrees of freedom can be much enhanced at the cost of a slight perturbation of the configurational distribution. This is illustrated for a test system of 1000 SPC, simple point charge, water molecules at 300 K and a density of 997 kg m(-3). Various fractions N(h)/(N(h) + N(l)) of water molecules were adiabatically decoupled to different degrees. The size of the diffusion coefficient of these decoupled water molecules was used as a measure for how much the sampling was enhanced and the average potential energy per water molecule was used as a measure of how much the configurational distribution of the system gets distorted. A variety of parameter values was investigated and it was found that for N(h)/(N(h) + N(l)) ≤ 0.1 the diffusion of the N(h) molecules could be enhanced by factors up to 35 depending on the method, the ratio N(h)/(N(h) + N(l)), the extent of adiabatic decoupling, and the temperature or force scaling factors, at the cost of a slight perturbation of the configurational distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call