Abstract
Soil salinity is one of the most important limiting factors of agricultural productivity in the world. The Triticum aestivum salt tolerance-related gene (TaSTRG) possesses a functional response to salt and drought stress conditions. A variety of stress factors, such as salt, drought, abscisic acid, and cold, may induce the expression of TaSTRG in wheat. In this study, the TaSTRG gene was transferred to tobacco via Agrobacterium-mediated transformation. Overexpression of TaSTRG in transgenic tobacco plants indicated higher salt tolerance and mediated more vigorous growth than in wild-type plants. Under salt stress conditions, the transgenic tobacco plants had higher germination and survival rates and longer root length than the control plants. Under salt treatments (200-250 mM), TaSTRG-overexpressing tobacco plants accumulated a higher amount of proline and had significantly lower malondialdehyde content than wild-type plants. Furthermore, transgene inheritance followed Mendelian laws, indicating the stability of TaSTRG in transgenic tobacco plants. These results indicated that the wheat TaSTRG gene plays an important role in responding to salt stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.