Abstract

Soil salinity is one of the most challenging problems that restricts the normal growth and production of rice worldwide. It has therefore become very important to produce more saline tolerant rice varieties. This study shows constitutive over-expression of the vacuolar Na+/H+ antiporter gene (OsNHX1) from the rice landrace (Pokkali) and attainment of enhanced level of salinity tolerance in transgenic rice plants. It also shows that inclusion of the complete un-translated regions (UTRs) of the alternatively spliced OsNHX1 gene provides a higher level of tolerance to the transgenic rice. Two separate transformation events of the OsNHX1 gene, one with 1.9 kb region containing the 5′ UTR with CDS and the other of 2.3 kb, including 5′ UTR, CDS, and the 3′ UTR regions were performed. The transgenic plants with these two different constructs were advanced to the T3 generation and physiological and molecular screening of homozygous plants was conducted at seedling and reproductive stages under salinity (NaCl) stress. Both transgenic lines were observed to be tolerant compared to WT plants at both physiological stages. However, the transgenic lines containing the CDS with both the 5′ and 3′ UTR were significantly more tolerant compared to the transgenic lines containing OsNHX1 gene without the 3′ UTR. At the seedling stage at 12 dS/m stress, the chlorophyll content was significantly higher (P < 0.05) and the electrolyte leakage significantly lower (P < 0.05) in the order 2.3 kb > 1.9 kb > and WT lines. Yield in g/plant in the best line from the 2.3 kb plants was significantly more (P < 0.01) compared, respectively, to the best 1.9 kb line and WT plants at stress of 6 dS/m. Transformation with the complete transcripts rather than the CDS may therefore provide more durable level of tolerance.

Highlights

  • Salinity is one of the prime factors for deterioration of the agricultural crop production scenario

  • Seedling and reproductive stages are the two stages at which the rice plant is most susceptible to salinity stress (Moradi and Ismail, 2007)

  • Coding sequences from Atriplex gmelini and S. salsa have been shown to provide a high level of tolerance to rice only at the seedling stage (Ohta et al, 2002; Zhao et al, 2006)

Read more

Summary

Introduction

Salinity is one of the prime factors for deterioration of the agricultural crop production scenario. About 1.5 million hectares of cultivable lands are Enhanced Salt Tolerance of Complete OsNHX1 becoming agriculturally unfavorable due to high salinity levels (Munns and Tester, 2008; Carillo et al, 2011). Plants need the ability to transport, compartmentalize, extrude, and mobilize Na+ ions to escape the detrimental effect of salinity stress (Apse and Blumwald, 2007). This compartmentalization allows plants to use NaCl as an osmoticum to maintain osmotic potential that drives water into the cells (Blumwald et al, 2000)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.