Abstract

AlGaN samples grown by plasma-assisted molecular-beam epitaxy on sapphire (0001) substrates, with 20%–50% Al content and without the use of indium, show intense room-temperature photoluminescence that is significantly redshifted, 200–400meV, from band edge. This intense emission is characterized by a long room-temperature lifetime (∼375ps) comparable to that seen in low defect density (∼108cm−2) GaN. Room-temperature monochromatic cathodoluminescence images at the redshifted peak reveal spatially nonuniform emission similar to that observed in In(Al)GaN alloys and attributed to compositional inhomogeneity. These observations suggest that spatial localization enhances the luminescence efficiency despite the high defect density (>1010cm−2) of the films by inhibiting movement of carriers to nonradiative sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.