Abstract
We study self-assembled composite networks consisting of silk-like protein fibers dispersed in a soft gel matrix formed by collagen-like block copolymers. Rheological analysis shows that the composite networks have significantly higher storage moduli than either of the single networks. This is caused by bundling of the fibrils due to depletion attraction induced by the collagen-like polymers. Moreover, the soft background network significantly modifies the non-linear response of the fibrillar network; the strain-hardening disappears almost completely and the stress and strain at which the gel breaks increase strongly, resulting in tougher hydrogels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.