Abstract

HypothesisDespite the wide spectrum of available nanoparticles, their utilization in lubricant and grease formulations remains challenging. To enhance their performance, an improved link between the interparticle contacts, brittleness of the resulting particle network, time-dependent rheology and tribology is required. ExperimentsWe systematically changed interparticle contacts and examined their effect on the colloidal stability, microstructure, rheological and tribological behavior of model greases by investigating four types of nanoclays: montmorillonite (Cloisite Na+), oleic-acid functionalized Cloisite Na+ (OA-Cloisite Na+), organomodified montmorillonite (C20A) and oleic-acid functionalized C20A (C20A-OA). FindingsWe observed a range of behaviors, starting from the lack of colloidal stability in greases derived with Cloisite Na+ and OA-Cloisite Na+ to semi-solid type systems with C20A and C20A-OA. Consistent with previous studies, the rheological and tribological properties of C20A systems scale with nanoclay loadings. Surprisingly, the functionalized C20A-OA system exhibited a delayed transition towards hydrodynamic lubrication, and enhanced lubrication properties, both of which were largely independent of nanoclay loadings. Coupled microstructural investigation and time-dependent rheology reveal that this behavior is governed by increasing repulsive forces, decreasing inter-particle friction between C20A-OA nanoparticles, and faster reorganization of the C20A-OA nanoparticle network under shear. Increased interparticle repulsion enables C20A-OA nanoclays to pass each other under shear and align in direction of shear, which reduces the overall viscosity, while the presence of OA on nanoclays decreases inter-particle friction and particle-steel surface friction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call