Abstract

Solid-phase extraction (SPE) of divalent metal ions with a lipophilic and potentially divalent hexadentate chelating reagent (H2L), with which octadecylsilyl silica (ODS), was impregnated with was studied to gain more insight into and develop the potential of this methodology. This is the first time to demonstrate that this reagent as well as other common nitrogen-containing reagents were retained both by adsorption due to hydrogen bonding between nitrogen atoms of the reagent and residual silanol groups in the ODS phase and by simple distribution into the hydrophobic space. An appreciably large amount of this reagent could be retained by the adsorption mechanism even with a relatively thin loading solution. The divalent metal ions of Mn(2+), Co(2+) and Zn(2+) were extracted as 1:1 neutral complexes ([ML]), while Ni(2+) and Cu(2+) as ion-pairs of 1:1 cationic complex ([MHL](+)) with anion in SPE with H2L. The extractability and selectivity were substantially the same as that in liquid-liquid extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call