Abstract

The NASA-sponsored Calibrated Passive Micro- wave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature (CETB) Earth System Data Record Project team has generated a multisensor, multidecadal time series of high-resolution radiometer products designed to support climate studies. This project uses image reconstruction techniques to generate conventional and enhanced-resolution daily brightness temperature images on a standard set of map projections. Sensors included in CETB are the Aqua Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E), Scanning Multichannel Microwave Radiometer, and all Special Sensor Microwave/Imager and Special Sensor Microwave Imager/Sounder radiometers. These span frequencies between 6 and 89 GHz. This paper considers the issues of adding the L-band (1.6 GHz) Soil Moisture Active Passive (SMAP) radiometer measurements to the CETB climate record, with emphasis on optimizing the reconstruction to provide the highest possible spatial resolution at the lowest noise level. SMAP radiometer reconstruction on SMAP-standard grids is also considered. Simulation is used to optimize the reconstruction, and the results confirmed using actual data. A comparison of the performance of the Backus–Gilbert approach and the radiometer form of the Scatterometer Image Reconstruction algorithm is provided. These are compared to the conventional drop-in-the-bucket gridded imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call