Abstract

Remote sensing images acquired by the FY4 satellite are crucial for regional cloud monitoring and meteorological services. Inspired by the success of deep learning networks in image super-resolution, we applied image super-resolution to FY4 visible spectrum (VIS) images. However, training a robust network directly for FY4 VIS image super-resolution remains challenging due to the limited provision of high resolution FY4 sample data. Here, we propose a super-resolution and transfer learning model, FY4-SR-Net. It is composed of pre-training and fine-tuning models. The pre-training model was developed using a deep residual network and a large number of FY4 A 4km and 1km resolution VIS images as the training data. The knowledge derived from 4 km to 1 km resolution images was incorporated into FY4 B 1 km to 0.25 km resolution VIS images. The FY4-SR-Net is fine-tuned by incorporating limited 1km and 0.25km resolution panchromatic (PAN) images, and then producing 1km super-resolution VIS images of the FY4 satellite. Using the one-day FY4 test dataset for qualitative and quantitative evaluations, the FY4-SR-Net outperformed the classic bicubic interpolation approach with a 16.12% reduction in root mean square error (RMSE) and a 2.97% rise in peak signal-to-noise ratio (PSNR) averages. The structural similarity (SSIM) value average increased by 0.0026. This work provides a new precedent for improving the spatial resolution of FY4 series meteorological satellites, which has important scientific significance and application properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.