Abstract

A small cross-section of silver nanoparticles (AgNPs) placed at the rear-part of the solar cell avoids the parasitic absorption of the nanoparticles which is the biggest barrier for plasmonic structures when acting as photocurrent enhancers. Herein, we demonstrate p-i-n planar perovskite solar cells with the structure ITO/PEDOT:PSS/MAPbI3/PCBM/Ni:Au, where the PCBM electron extraction layer (EEL) was intentionally modified with variable amounts of AgNPs. The addition of small amounts of AgNPs (e.g., 5 wt. %) into the PCBM improved the overall reproducibility and reliability of the solar cell fabrication process after optimization. Plasmonic simulations suggest that any plasmonic-optical effects are relatively small compared to sample absorbance due to perovskite alone. It has been concluded that plasmonic-electrical effects play a major role in averaged performance improvement. Therefore, the addition of small AgNPs in low concentration to the EEL layer accounts for higher Jsc, Voc and FF as a result of a better perovskite coverage by the EEL and an improved charge carrier collection as evidenced by morphological and electrical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.