Abstract
In this study, Mg-modified sludge biochar (MB) and Mg-Fe double oxides/sludge biochar composites (MFB) were synthesized for enhanced removal of phosphate from aqueous solution. The phosphate adsorption followed the Langmuir-Freundlich isotherm model, and the maximum capacity was 142.31 mg P/g and 35.41 mg P/g for MB and MFB, respectively. MB exhibited the higher adsorption capacity at pH 8-9 and performed well under the influences of coexisting anions and temperature (4-45 °C). Adsorption kinetics was well described by the pseudo-second-order kinetic model, indicating the chemical bonding between phosphate and adsorption sites. The adsorption capacity of phosphate decreased by < 15% after three successive recycles. Based on FTIR, XRD, and XPS analysis, the main mechanisms for phosphate removal by MB included electrostatic attraction, surface complexation, and precipitation. Hydroxides/oxides particles of Mg on the surface of MB with positive charge could adsorb HPO42- and PO43- to form surface complex and convert to MgHPO4 and Mg3(PO4)2. The released amounts of Fe, Cd, Cr, Pb, Cu, Zn, Sb, and As from MB and MFB were low and acceptable. However, the released amount of Mg was as high as 4.9 wt% for MB and 8.7 wt% for MFB at the pH corresponding maximum adsorption capacity, posing a risk of salt increase. The grass (Lolium perenne L.) germination and early growth with the addition of P-laden biochars as fertilizer are seriously inhibited due to the high alkalinity, particularly for MB. The environmental risk of P-laden biochars (with high alkalinity and salt content) as fertilizer should be emphasized in practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.