Abstract

The phytoremediation of phenolic endocrine disrupting compounds (EDCs) in coastal waters by intertidal macroalgae was firstly investigated. The results showed that intertidal macroalgae could remove bisphenol A (BPA) and nonylphenol (NP) at environmental relevant concentration, and Ulva pertusa was the most efficient one. In most cases, the order of EDCs removal efficiency could be expressed as: green algae > brown algae > red algae. The in-situ monitoring using a charge‐coupled device imaging system confirmed the accumulation of EDCs in the intertidal macroalgae. The removal mechanisms included the initial rapid biosorption process, followed by the slow accumulation and biodegradation. The removal efficiency of BPA and NP was slightly dependent on temperature and nutrient concentration. A linear relationship was observed between the initial concentration and the average removal rate (R2 > 0.99). The BPA and NP at the environmental relevant concentration (100 μg L−1) could be removed efficiently using Ulva pertusa even after three cycles in pilot-scale experiments. The high removal efficiency of NP and BPA was also confirmed by the field investigation from the intertidal zone with abundant Ulva pertusa. These findings demonstrated that intertidal macroalgae could play essential role for the phytoremediation of phenolic EDCs in coastal waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call