Abstract
Elevated levels of reactive oxygen radicals caused by environmental stress are the key triggers of inflammation, aging, and disease; thus, it is critical to develop novel reactive oxygen radical scavenging methods with high efficiency and low toxicity. As a result of their selective reactive oxygen radical removal, hydrogen molecules are strong candidates, but their application is limited by the small hydrogen supply and short duration of action. In this study, we for the first time combined nanobubble (NB) technology and hydrogen water to remove reactive oxygen species (ROS) using copper ions as a representative environmental pollutant and Tetrahymena thermophila as a model organism. Hydrogen NBs displayed a remarkable capability of removing H2O2 and O2•- at molar ratios of 8:1 and 240:1, respectively, which were unable to be removed by dissolved hydrogen molecules only. During the oxidative defense phase, hydrogen NB water either directly removed ROS or increased the activity and relative expression of glutathione peroxidase (GSH-Px). During the oxidative inhibition phase, hydrogen NB water exerted antioxidant effects mainly by increasing the activities of superoxide dismutase and GSH-Px as well as the expression of the corresponding genes. Our results provide an important theoretical support for the wide application of hydrogen NBs in empowering the antioxidant defense system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.