Abstract

Self-assembled fungus-flexible fiber composite microspheres (SFFMs) were firstly combined with microbially induced calcium precipitation (MICP) in a continuous-flow bioreactor and achieved the efficient removal of fluoride (F-), nitrate (NO3-), and calcium (Ca2+). Under the influent F- of 3.0mgL-1, pH of 7.0, and HRT of 8h, the average removal efficiencies reached 77.54%, 99.39%, and 67.25% (0.29, 2.03, and 8.34mgL-1h-1), respectively. Fluorescence spectrum and flow cytometry analyses indicated that F- content significantly affected the metabolism and viability of bacteria. SEM images showed that flexible fibers and intertwined hyphae provided effective locations for bacterial colonization in SFFMs. The precipitated products were characterized by XRD and FTIR, which revealed that F- was mainly removed in the form of calcium fluoride and calcium fluorophosphate (CaF2 and Ca5(PO4)3F). High-throughput analysis at different levels demonstrated that Pseudomonas sp. WZ39 acted as the core strain, which played a crucial role in the bioreactor. The mechanism of enhanced denitrification was attributed to minor F- stress and bioaugmentation technology. This study highlighted the superiorities of SFFMs and MICP combined remediation and documented a promising option for F-, NO3-, and Ca2+ removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call