Abstract

The adsorption behaviour and mechanisms of the surface modified activated carbon with bacteria was evaluated. 16S rRNA was employed to identify the hydrocarbon-degrading bacteria. The bacteria was characterized by TEM and electron microscope. The surface modified activated carbon with bacteria was characterized by SEM. The adsorption behaviour was tested by static adsorption and dynamic adsorption. The adsorption efficiency of the modified activated carbon was high when pH was weak acidic, and the adsorption capacity increased with the increase of temperature ranging from 20 to 35°C. The adsorption capacity peaked at 234·6mgg-1 at 25°C, which was sixfold higher than that of activated carbon. The pseudo-first-order kinetic can more accurately assess Congo red adsorption on the two adsorbents. The adsorption of Congo red by bacteria surface modified activated carbon fitted well with the Langmuir's model. The adsorption process was endothermic, and the biological floccules were formed during the adsorption. The physical adsorption is the main driving force. The results indicate that the bacteria surface-modified activated carbon can be used effectively as an adsorbent to eliminate Congo red from aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.