Abstract

It is of great significance to protect workers from Sulphur compounds in efficient ways during the regular overhaul or emergency management. Efficient adsorbent with low pressure drop is highly desired in protective equipment. In this work, Cu-ordered mesoporous carbon foams (MeCF) were prepared through the sol-gel casting and wet-impregnation process. The obtained carbon foams possessed typical sponge structure with high porosity and copper particles attached on the skeleton. The characterization on morphology, structure and property illustrated that the presence of mesopores could effectively inhibit the growth of copper particle on MeCF. As the representative of Sulphur compounds, H2S was selected to evaluate the protective performance. Porous copper carbon foams with moderate loading rate (3%) of copper species exhibited longest breakthrough time and largest adsorption capacity. Compared with the microporous foams, MeCF-3 displayed promoted protective performance with breakthrough time of 54.7 min and adsorption capacity of 27.8 mg/g. The enhancement on capabilities was attributed to small-sized copper species with high activity and better dispersion on mesoporous structure. These results reveled that MeCF with sponge frameworks, developed mesoporous structure and high dispersion of active species would be a promising candidate for the elimination of H2S in personal protective equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.