Abstract

Chlorpyrifos is a pesticide widely used in agricultural production with a relatively long residual half-life in soil. Addressing the problem of residual chlorpyrifos is of universal concern. In this study, rice hull biochar was used as an immobilized carrier to prepare the immobilized strain H27 for the remediation of chlorpyrifos-contamination soil. Soil microorganisms after remediation were investigated by ecotoxicological methods. The immobilized strain H27 had the highest removal rate of chlorpyrifos when 10% bacterial solution was added to the liquid medium containing 0.075-0.109 mm diameter biochar cultured for 22 hr. This study on the removal of chlorpyrifos by immobilized strain H27 showed that the initial concentration of chlorpyrifos in solution was 25 mg/L, and the removal rate reached 97.4% after 7 days of culture. In the soil, the removal rate of the immobilized bacteria group increased throughout the experiment, which was significantly higher than that of the free bacteria and biochar treatment groups. The Biolog-ECO test, T-RFLP and RT-RCR were used to study the effects of the soil microbial community and nitrogen cycling functional genes during chlorpyrifos degradation. It was found that ICP group had the highest diversity index among the four treatment groups. The microflora of segment containing 114 bp was the dominant bacterial community, and the dominant microflora of the immobilized bacteria group was more evenly distributed. The influence of each treatment group on ammonia-oxidizing bacteria (AOB) was greater than on ammonia-oxidizing archaea (AOA). This study offers a sound scientific basis for the practical application of immobilized bacteria to reduce residual soil pesticides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.