Abstract
Time-dependent dielectric breakdown (TDDB) of magnetic tunnel junctions (MTJs) under a constant voltage stress, tunneling magnetoresistance (TMR), and barrier properties, e.g. effective barrier height and thickness, were investigated as a function of thermal annealing temperatures. A Weibull failure distribution function was plotted in terms of time to breakdown (T BD ) of MTJs. The T BD when 63% fraction of as-fabricated MTJs cumulatively failed increased significantly after thermal annealing at 210 °C while the TMR also increased from 8.85% to 14.22% before and after thermal annealing at 210 °C, respectively. We believe that the enhanced reliability of the MTJs is due to healing effect of bulk defects in the barrier during the annealing process, likely leading to the reduction of defect trap density. The reduction of bulk defects in the barrier was also confirmed by the lowered 1/f noise power spectral density from voltage fluctuation measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.