Abstract
Kirkendall voids are detrimental to the Cu-Sn bonding interface, causing the failure of the high-density package. Herein, the perpendicularly aligned nanotwinned Cu (p-ntCu) and the horizontally aligned nanotwinned Cu (h-ntCu) are prepared by controlling the electrodeposition procedure. The p-ntCu shows advantages both in fast-bonding process and in void suppression through the in-situ microstructure evolution. Compared with h-ntCu, the abundant perpendicularly aligned twin boundaries in p-ntCu provide fast interdiffusion paths to build a bonding interface. In the bonding process, p-ntCu grows to ultra-large-grained Cu with an average grain size of 6.68 μm. The reduced density of normal grain boundaries in p-ntCu lowers the Cu diffusion rate and contributes to more balanced interdiffusion at the bonding interface, which is confirmed by molecular dynamics simulation and kinetic calculations of intermetallic compound (IMC) growth. In addition, the low impurity content in p-ntCu further reduces the diffusion flux imbalance and limits the nucleation of Kirkendall vacancies. Consequently, the p-ntCu/Sn interface keeps void-free during 150 °C long-term thermal aging due to the synergistic effect of reduced grain-boundary diffusion and lower impurity content, which will be beneficial for achieving high-reliability Cu-Sn bonding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.