Abstract
Reactive nitrogen oxide species (RNOS) may contribute to the progression/enhancement of ischemic injury by augmentation of glutamate release, reduction of glutamate uptake, or a combination of both. Consistent with this, induction of nitric oxide synthase (NOS-2) in murine neocortical cell cultures potentiated neuronal cell death caused by combined oxygen–glucose deprivation in association with a net increase in extracellular glutamate accumulation. However, uptake of glutamate via high affinity, sodium-dependent glutamate transporters was unimpaired by induction of NOS-2 under either aerobic or anaerobic conditions. Further, blocking possible routes of extra-synaptic glutamate release with NPPB [5-nitro-2-(3-phenylpropylamino)-benzoic acid], a volume-sensitive organic anion channel blocker, or TBOA ( d, l-threo-β-benzyloxyaspartate), an inhibitor of glutamate transport, exacerbated rather than ameliorated injury. Finally, treatment with riluzole or tetanus toxin attenuated the enhancement in both glutamate accumulation and oxygen–glucose deprivation-induced neuronal injury supporting the idea that increased synaptic release of glutamate underlies, at least in part, the potentiation of neuronal injury by RNOS after NOS-2 induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.