Abstract

Nitric oxide and prostaglandins were shown to contribute to the endothelial mediation of flow-induced dilation of skeletal muscle arterioles of rats. Thus, we hypothesized that flow-induced dilation and its mediation are altered in gracilis muscle arterioles of mice deficient in the gene for endothelial nitric oxide synthase (eNOS-KO) compared with control wild-type (WT) mice. Gracilis muscle arterioles ( approximately 80 micrometer) of male mice were isolated, then cannulated and pressurized in a vessel chamber. The increases in diameter elicited by increases in perfusate flow from 0 to 10 microq/min were similar in arterioles from eNOS-KO (n=28) and WT (n=22) mice ( approximately 20 micrometer at 10 microL/min flow). Removal of the endothelium eliminated flow-induced dilations in vessels of both strains of mice. N(omega)-nitro-L-arginine (L-NNA, 10(-4) mol/L) significantly inhibited flow-induced dilation in arterioles of WT mice by approximately 51% but had no effect on responses of arterioles from eNOS-KO mice. Indomethacin (INDO, 10(-5) mol/L) inhibited flow-induced dilation of WT mice by approximately 49%, whereas it completely abolished this response in arterioles of eNOS-KO mice. Simultaneous administration of INDO and L-NNA eliminated flow-induced responses in arterioles of WT mice. Dilations to carbaprostacyclin were similar at concentrations of 10(-8) and 3x10(-8) mol/L but decreased significantly at 10(-7) mol/L in arterioles of eNOS-KO compared with those of WT mice. These findings demonstrate that, despite the lack of nitric oxide mediation, flow-induced dilation is close to normal in arterioles of eNOS-KO mice because of an enhanced release of endothelial dilator prostaglandins and suggest that this vascular adaptation may contribute to the regulation of peripheral resistance in eNOS-KO mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.