Abstract

The interaction of slighly relativistic femtosecond laser radiation with microstructured Si targets was studied. The microstructuring was performed by nanosecond pulse laser ablation with additional chemical etching of the target material. An analysis was made of the optical damage under the action of femtosecond radiation near the ablation threshold. It was experimentally demonstrated that the hot electron temperature increases appreciably in the laser-driven plasma (from ~370 to almost 500 keV) as well as radiation yield in the MeV range at the interaction of a high power femtosecond laser pulse with a microstructured surface in comparison with a flat surface. Numerical simulations using 3D3V PIC code Mandor revealed that the charged particle energy growth is caused by the stochastic motion of electrons in the complex field formed by the laser field and the quasistatic field at the sharp tips of micromodifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call