Abstract

Natural micellar casein is generally dried into powdered forms for commercial transportation and storage. However, the poor rehydration ability of micellar casein powder critically limited the potential applications due to its dense cross-linked structures caused by colloidal calcium phosphate (CCP). In this study, micellar casein solutions were exposed to a high hydrostatic pressure (HHP) ranging from 100 to 500 MPa and were then freeze dried to produce powders. The effects on the casein micelle structures and the rehydration characteristics including wetting, dispersion and dissolving were comprehensively investigated. The results showed that HHP could induce smaller micelle sizes and significantly increase the free calcium in the reconstituted solution. It demonstrated that the majority of CCP bridges in casein micelles were dissociated, which produced porous powders with loose structures and thus significantly improved rehydration behaviors. 300 MPa was the pressure level that caused the quickest dispersion process and best solubility. Consequently, HHP has potential to be a novel physical technique to potentially modify the protein higher-order structures as well as improve the corresponding functionalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call