Abstract

Sulfate wastewater has a wide range of sources and greatly harms water, soil, and plants. Iron-carbon microelectrolysis (IC-ME) is a potentially sustainable strategy to improve the treatment of sulfate (SO42-) wastewater by sulfate-reducing bacteria (SRB). In this study, an iron-carbon mixed micro-electrolysis bioreactor (R1), iron-carbon layered bioreactor (R2), activated carbon bioreactor (R3), and scrap iron filing bioreactor (R4) were constructed by up-flow column experimental device. The performance and mechanism of removing high-concentration sulfate wastewater under different sulfate concentrations, hydraulic retention times (HRT), and chemical oxygen demand (COD)/SO42- were discussed. The results show that the iron-carbon microelectrolysis-enhanced SRB technology can remove high-concentration sulfate wastewater, and the system can still operate normally at low pH. In the high hydraulic loading stage (HRT = 12h, COD/SO42- = 1.4), the SO42- removal rate of the R1 reactor reached 98.08%, and the ORP value was stable between - 350 and - 450mV, providing a good ORP environment for SRB. When HRT = 12h and influent COD/SO42- = 1.4, the R1 reactor sulfate removal rate reached 96.7%. When the influent COD/SO42- = 0.7, the sulfate removal rate was 52.9%, higher than the control group. Biological community analysis showed that the abundance of SRB in the R1 reactor was higher than that in the other three groups, indicating that the IC-ME bioreactor could promote the enrichment of SRB and improve its population competitive advantage. It can be seen that the synergistic effect between IC-ME and biology plays a vital role in the treatment of high-concentration sulfate wastewater and improves the biodegradability of sulfate. It is a promising process for treating high-concentration sulfate wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call