Abstract

Abstract Simultaneous in-reservoir upgrading and recovery of heavy oil are experimentally studied by using a continuous setup filled with carbonate cores. Upgrading reaction products as well as the recovered oil are analyzed in order to investigate the recovery mechanisms associated with this process. In-situ upgrading technology (ISUT) is based on injection of high molecular weight (low quality) cut of oil, e.g., vacuum residue (VR), together with ultradispersed nano-catalyst and hydrogen. By injecting VR, catalyst, and hydrogen, the catalytic nano-particles deposit in the rock around an injection well, where the upgrading reactions occur. In this study, first, upgrading reactions happen inside a core packed container at the temperature, pressure, and residence time of 360 °C, 10 MPa, and 36 h, respectively. Subsequently, the hot reaction products are directed into another cylinder filled with carbonate cores to displace the heavy oil in place. There are two main steps in a reservoir during ISUT. First, the injected VR is converted to lighter products during hydroprocessing reactions. Then the upgraded liquid and gaseous products along with hydrogen will displace the heavy oil toward production wells. At the conditions of this experiment in the reactor, 38 wt% of the VR cut is converted to lighter products with 1 wt% gases (mainly H2S and hydrocarbons with 1 to 5 carbon atoms) and 4.8 wt% naphtha cut (hydrocarbons with 5 to 12 carbon atoms). These light products act as solvents in the areas farther from the reaction zone and enhance the recovery of heavy oil. In addition, high temperatures, mechanical push, and rock matrix thermal expansion improve the oil displacement in the carbonate rock. By enhancing the oil recovery and permanently upgrading heavy oil in one single stage, the need for diluent addition and steam generation is minimized, which makes ISUT economical and environmentally favorable. In an innovative experimental setup, both upgrading and recovery steps in the ISUT process are carefully analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.