Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with autoantibodies as a near universal feature of the disease. Earlier investigations from our laboratory revealed increased oxidative damage in SLE patients. Therefore, we hypothesized that oxidative by-products, such as hydroxyl radical (√OH), could lead to neoantigens like √OH damaged human serum albumin (HSA), which could in turn initiate autoimmunity in SLE. In the present study, the binding characteristics of SLE autoantibodies with native and √OH damaged HSA were assessed. SLE patients (n = 74) were examined by direct binding ELISA and the results were compared with healthy age- and sex-matched controls (n = 44). High degree of specific binding by 52.7% of patients sera towards √OH damaged HSA, in comparison to its native analogue (p < 0.05) was observed. Normal human sera showed negligible binding with either antigen. Competitive ELISA and gel retardation assays reiterate the direct binding results. The increase in total serum protein carbonyl levels in the SLE patients was largely due to an increase in oxidized albumin. HSA of SLE patients (SLE-HSA) and normal subjects (normal-HSA) were purified. Spectroscopic analysis confirmed that the SLE-HSA samples contained higher levels of carbonyls than normal-HSA (p < 0.01). SLE-HSA was conformationally altered, with more exposure of its hydrophobic regions. Collectively, the oxidation of plasma proteins, especially HSA, might enhance oxidative stress in SLE patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call