Abstract

Novel supermacroporous PSA-nZVI composites with nanoscale zero-valent iron particles (nZVI) embedded into poly (sodium acrylate) (PSA) cryogels were synthesized through ion exchange followed by in-situ reduction. The magnetic composites were evaluated for material characterizations and their efficiency for Cr(VI) and total Cr removal from aqueous medium in batch experiments. PSA-nZVI composites with high nZVI loading capacity up to 128.70 mg Fe/g PSA were obtained, and the interconnected macroporous structure of PSA cryogel remained unaltered with nZVI uniformly distributed on PSA cryogel as determined by TGA, SEM, TEM, XRD and XPS analyses. PSA-nZVI composites showed faster reaction rate than free nZVI both for Cr(VI) and total Cr removal, suggesting no mass transfer resistance and the enhanced reactivity of nZVI in PSA carrier. PSA-nZVI composites exhibited much more remarkable performance for Cr(VI) and total Cr removal than free nZVI particles in high removal capacity and broad pH application range (pH 4–10). The reaction mechanisms were also elucidated with XPS analyses before and after Cr(VI) reduction reactions. These results demonstrate that PSA cryogel acts as an excellent carrier and shows multiple functions in nZVI particle dispersion, pH buffering and oxidation resistance in addition to immobilizing nZVI particles from release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call