Abstract

While Mo/HZSM-5 is known as a catalyst for methane dehydro-aromatization (MDA), low activity and rapid deactivation have been considered issues to be overcome. In order to improve catalytic performance, NiO was physically mixed with Mo/HZSM-5, which significantly enhanced the yield for aromatic compounds (benzene and toluene), and improved catalytic stability. Combined XRD, CH4–TPSR, CO chemisorption, TEM-EDS, NH3–TPD, pyridine FT–IR, TPO, visible Raman, and N2 physisorption analysis confirmed that NiO promoted the dispersion of MoCx active sites and suppressed coke formation on MoCx, by converting coke precursors to carbon nanotube (CNT) on itself. As a result, after the reaction, the pore size and pore volume did not change much, which is attributed to the improved stability. This study demonstrates that physically mixed NiO can act as an excellent catalyst promotor for MDA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.