Abstract

Si/C and Si/carbon nanotube (CNT)/C composite nanofibers were prepared by electrospinning and carbonization. The carbon nanofiber matrix can accommodate the volume change of Si nanoparticles and provide continuous pathways for efficient charge transport along the fiber axis. CNTs can improve the electronic conductivity and electrochemical performance of the composite nanofiber anodes. Results showed that many different types of connections between CNTs, Si nanoparticles and carbon matrix were formed. At a high current density of 300 mA g−1, after 30 cycles, the capacity of Si/CNT/C composite nanofiber anode was 44.3% higher than the anode without CNT and the C-rate performance of Si/CNT/C composite nanofiber anode was also superior to that of Si/C anode. It is, therefore, demonstrated that Si/CNT/C nanofibers are promising anode material with large capacities, good cycling stability, and good rate capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.