Abstract

Phase-sensitive optical time domain reflectometry (Φ-OTDR) realizes quantitative measurement of the dynamic strain employing phase demodulation. Unfortunately, it is difficult to measure the large dynamic strain with the conventional Φ-OTDR due to the restriction of the unwrapping algorithm. In this work, an approach based on two-wavelength probe is proposed and demonstrated to improve the measurable range of the dynamic strain in Φ-OTDR. By utilizing the difference between the two phases acquiring with two different lasers, the large dynamic strain can be recovered. In experiments, dynamic strains with peak values from 10.32 uɛ to 24.08 uɛ are retrieved accurately, which cannot be recovered with the conventional Φ-OTDR. Moreover, the tunable sensitivity is also demonstrated through adjusting the wavelengths of the probe. With the increment of the wavelength interval from 9.06 nm to 23.06 nm, the normalized sensitivity increases from 0.4 to 1 accordingly. That agrees well with the theoretical prediction. Foreseeably, the proposed method will extend the scope of application fields for Φ-OTDR, which requires large dynamic strain recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.