Abstract

An enhancement up to 250-fold in laser Raman signals for real-time gas analysis has been achieved within an actively stabilized external resonator (ASER), whose length is actively matched to the single-frequency excitation laser using the Pound–Drever technique. With the Raman cell present, enhancements up to 50-fold are achieved, and the resulting detection limit for hydrogen in ambient-pressure gas mixtures is about ten parts-per-million in a 1 min analysis period at unity signal-to-noise ratio. Based upon the recent development of a fiber-pumped Nd:YVO4 laser with single-frequency output exceeding 5 W at 532 nm, this highly sensitive instrument is applied to detection of tritiated gases, wherein the compactness and low heat of this laser head permit placing the entire optical system, including laser head, charge coupled Raman detector, and ASER, within the glove box necessary for secondary containment of tritium, thereby accomplishing a robust, highly sensitive Raman analytical system for hazardous substances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.