Abstract
Background and purposeOvercoming radioresistance is a critical challenge in pancreatic ductal adenocarcinoma (PDAC). Our study investigates the targeting of Cyclin-dependent kinase-1 (CDK1) through genetic and pharmaceutical inhibition to radiosensitize PDAC cells. Materials and MethodsMass spectrometry and phosphoproteomics were used to analyze engineered radiation-resistant PDAC cell lines (MIA PaCa-2 and PANC-1) compared to parental controls. The TCGA PDAC database was queried for clinical outcomes and patients were dichotomized based on the median CDK1 mRNA expression. We generated a microRNA-based TET-on inducible shRNA to inhibit CDK1 expression in two PDAC cell lines. We used an orthotopic model of PDAC to test the radiation sensitivity of PDAC tumors with or without doxycycline treatment. We targeted CDK1 activation with a selective CDK1 inhibitor, RO-3306, followed by in vitro experiments employing immunoblotting, immunocytochemistry, and clonogenic assays. ResultsPhosphoproteomics analysis revealed that phospho-CDK1 (Tyr15) was significantly elevated in the resistant clones. We found that high CDK1 expression was associated with worse OS in PDAC patients. Radiation exposure increased CDK1 phosphorylation. In MIA PaCa-2 and PANC-1 cells, CDK1 inhibition synergized with radiation therapy to delay tumor growth in vivo. CDK1 inhibition via. RO-3306 resulted in a significant shift of cells into the G2/M phase and disrupted DNA repair after radiation exposure. In vitro, pre-treatment with RO-3306 led to enhanced radiosensitivity of PDAC cells. ConclusionCDK1 plays a crucial role in PDAC radioresistance. Targeting CDK1 with radiotherapy holds promise for further investigation in PDAC treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.