Abstract

The mechanism behind the improved light emission properties of semipolar and nonpolar InGaN/GaN multiple quantum wells (MQWs) conformally grown over n-GaN nanowires (NWs) was studied using variable-temperature photoluminescence and time-resolved photoluminescence (TRPL). A reduced internal polarization electric field was found to account for the observed enhancement in the radiative recombination rate and internal quantum efficiency of the MQWs on NWs. Additionally, the excitation-dependent TRPL results indicate a significantly depressed Auger recombination in MQWs grown on NWs that can be attributed to the feature of ultralow dislocation density of the MQWs grown over GaN nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.