Abstract

AbstractNear-inertial waves (NIWs) radiate energy out of the mixed layer when they develop small lateral scales. Refraction of these waves by gradients in planetary and vertical vorticity has traditionally been invoked to explain this phenomenon. Here, a new mechanism for the enhancement of NIW radiation is described involving the interaction of NIWs with vertical circulations at fronts undergoing frontogenesis. Frontal vertical circulations drive a Doppler shift that is proportional to the wave’s vertical wavenumber m and that changes sign across a front, inducing large lateral differences in wave phase within a few inertial periods. Theory predicts that the process should generate a vertical energy flux that varies inversely with m in contrast to the m−3 dependence expected from refraction. As a consequence, high-mode NIWs are much more effective at radiating energy when fronts and their vertical circulation are present. Numerical simulations initialized with fronts, an array of eddies that drive frontogenesis, and NIWs of various modes are used to test the theory. In the simulations, the interaction of the NIWs with the frontal vertical circulations generates wave beams that radiate down from the fronts. The resultant downward energy flux varies with m following the theoretical scaling laws. In the beams, the Eulerian frequency is inertial within a few percent, yet the waves’ potential and kinetic energies are comparable, thus indicating a superinertial intrinsic frequency. The downshift in Eulerian frequency from the intrinsic frequency is due to horizontal advection of the waves by the eddies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call