Abstract

ZnO nanowalls (NWLs) represent a nontoxic, abundant, and porous material, with promising applications in sensing and photocatalysis. They can be grown by low-cost solution methods on Al (covered) substrates; Al(OH)4– generated in situ is assumed to be responsible for engendering the NWL morphology. Here, we grew ZnO NWLs by chemical bath deposition (at 70–95 °C). The roles of pH, concentration of Al(OH)4–, and growth time on the thickness and quality of NWL film were experimentally investigated, and the growth kinetics was explained in terms of a self-screening model. Increasing the chemical bath pH from 5.7 to 7.4 led to a 40% thicker film and more NWLs per unit area of the substrate—due to increased concentration of Al(OH)4–—but these were accompanied by the presence of embedded micro-/nanoparticles. We propose the use of anodized Al as a way to enhance the growth rate and density of the NWLs with no detrimental effect on film quality. Compared with non-anodized Al, NWL film grown on anodized Al (at the...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.