Abstract

Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity. However, this scheme causes date rate loss compared with direct transmission. In this work, our focus is on recovering from the data rate loss while simultaneously achieving spatial diversity. Particularly, an enhanced quadrature signaling-based cooperative scheme was designed, which can realize full-rate transmission by using the signal space diversity (SSD) technique. Then, accurate bit error rate (BER) expression for the full-rate scheme was derived over independent and non-identically distributed (INID) Rayleigh fading channels. Specifically, a closed-form BER expression is obtained, which is quite tight over the whole SNR range, and thus allows for rapid and efficient evaluation of system performance under various channel conditions. Moreover, an asymptotic approximation of the BER was derived to show that the full-rate scheme can achieve full diversity. Simulation results verify the tightness of the analysis and show that the full-rate scheme significantly outperforms the traditional quadrature signaling-based scheme by about 2 dB with the same complexity order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call