Abstract
ABSTRACT In this study, we utilized direct ultrafiltration (UF) and integrated microflocculation–ultrafiltration (MF–UF) processes to treat raw water from four distinct sources, covering both dry and heavy rainfall periods. We assessed the effectiveness of microflocculation (MF) as a pretreatment to enhance treatment efficiency under complex water conditions, focusing on its role in mitigating membrane fouling. The results demonstrated the superior adaptability of UF membranes when combined with MF pretreatment, particularly in managing high turbidity during heavy rainfall, a challenge for standalone UF processes in meeting regulatory standards. This integrated approach notably improved UV254 removal efficiency from approximately 60–80%. Additionally, excitation–emission matrix spectroscopy revealed that while the MF–UF process is effective in removing dissolved organic matter (DOM), it faces limitations with high DOM concentrations in raw water. Comparative analysis of membrane flux between the two methods showed that MF pretreatment reduces filtration time, enhances flux rates, and significantly decreases membrane fouling. Finally, scanning electron microscopy further provided insights into the structure and morphology of UF membrane surface filter cakes, illustrating how MF pretreatment contributes to the sustained efficiency of membrane flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.