Abstract

It is proposed that the stability of a protein can be increased by selected amino acid substitutions that decrease the configurational entropy of unfolding. Two such substitutions, one of the form Xaa----Pro and the other of the form Gly----Xaa, were constructed in bacteriophage T4 lysozyme at sites consistent with the known three-dimensional structure. Both substitutions stabilize the protein toward reversible and irreversible thermal denaturation at physiological pH. The substitutions have no effect on enzymatic activity. High-resolution crystallographic analysis of the proline-containing mutant protein (Ala-82----Pro) shows that its three-dimensional structure is essentially identical with the wild-type enzyme. The overall structure of the other mutant enzyme (Gly-77----Ala) is also very similar to wild-type lysozyme, although there are localized conformational adjustments in the vicinity of the altered amino acid. The combination of a number of such amino acid replacements, each of which is expected to contribute approximately 1 kcal/mol (1 cal = 4.184 J) to the free energy of folding, may provide a general strategy for substantial improvement in the stability of a protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.