Abstract

The glycoprotein E2 of classical swine fever virus (CSFV) is a major immunogenic protein that induces neutralizing antibodies and protective immunity. Thus, E2 is a suitable target antigen for the development of genetically engineered CSFV vaccines. However, these vaccines cannot generate complete protective immunity in their hosts, thereby limiting the scope of applications under field conditions. IFN-γ is an immune adjuvant that has been shown to enhance antigen immune response in various experimental models. In this study, porcine IFN-γ was used to improve the immunogenicity of the CSFV E2 subunit vaccine in pigs. Pigs were immunized with E2 subunit vaccine alone or in combination with IFN-γ. Results demonstrated that porcine IFN-γ did not enhance the CSFV-specific antibody and neutralizing antibody titers compared with the E2 subunit vaccine alone. However, co-administration of the E2 and IFN-γ subunit vaccines significantly enhanced the CSFV-specific IFN-γ expression. These findings indicated that porcine IFN-γ can increase cellular immune responses to E2 protein in pigs. Furthermore, co-immunization with E2 + IFN-γ subunit vaccine and C-strain conferred complete protection against CSFV. In contrast, E2 subunit vaccines provided incomplete protection in pigs. These results indicated that using IFN-γ as an adjuvant with CSFV E2 subunit vaccines can enhance the specific protective immune response. Therefore, E2 + IFN-γ subunit vaccine is a promising marker vaccine candidate for the control and eradication of CSF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.