Abstract
A three-stage process that consisted of saccharification, ethanol fermentation of the saccharified liquid, and anaerobic treatment of the saccharified residue to convert food waste (FW) to ethanol and CH4 was developed. Results revealed that high sugar recovery (i.e., 61.7%) from FW could be achieved after saccharification and 15.2% saccharified sugar was retained in saccharified residue after solid–liquid separation. A high ethanol yield was obtained during ethanol fermentation of the saccharified liquid. This high yield indicates the superiority of the system. The ethanol productivity in the ethanol fermentation stage was 0.9 g L–1 h–1. A CH4 yield of 248.4 mL/g of volatile solid (VS) was achieved in the CH4 fermentation stage, whereas that in the single-stage fermentation system was 252.6 mL/g of VS. A comparison of the two fermentation systems based on material balance and energy outcome demonstrated that the three-stage process achieved a 27.5% increase in the FW decomposition rate, a 51.8% reduction...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.