Abstract

Optimization of the culture medium and process variables for xylitol production using corncob hemicellulose hydrolysate by Pachysolen tannophilus (MTTC 1077) was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on xylitol production was achieved using a Plackett-Burman design. Peptone, xylose, MgSO4·7H2O, and yeast extract were selected based on their positive influence on xylitol production. The selected components were optimized with Box-Behnken design using response surface methodology (RSM). The optimum levels (g/L) were peptone: 6.03, xylose: 10.62, MgSO4·7H2O: 1.39, yeast extract: 4.66. The influence of various process variables on the xylitol production was evaluated. The optimal levels of these variables were quantified by the central composite design using RSM, for establishment of a significant mathematical model with a coefficient determination of R 2 = 0.91. The validation experimental was consistent with the prediction model. The optimum levels of process variables were temperature (36.56°C), pH (7.27), substrate concentration (3.55 g/L), inoculum size (3.69 mL), and agitation speed (194.44 rpm). These conditions were validated experimentally which revealed an enhanced xylitol yield of 0.80 g/g.

Highlights

  • Lignocellulosic materials represent an abundant and inexpensive source of sugars and can be microbiologically converted to industrial products

  • This study investigates the effect of process variables such as pH, temperature, substrate concentration, inoculum size, and agitation speed on xylitol yield

  • Sugar and sugar alcohol in the culture broth were measured by high-performance liquid chromatography (HPLC), model LC-10-AD (Shimadzu, Tokyo, Japan) equipped with a refractive index (RI) detector

Read more

Summary

Introduction

Lignocellulosic materials represent an abundant and inexpensive source of sugars and can be microbiologically converted to industrial products. In addition to reducing dental caries, xylitol promotes tooth enamel remineralization by reversing small lesions. This happens because, when in contact with xylitol, the saliva seems to be favorably influenced; the chemical composition of xylitol induces the calcium ions and phosphate [7]. For these characteristics, xylitol was a feed stock of great interest to food, odontological, and pharmaceutical industries [1]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call