Abstract

A biorefinery process for high yield production of succinic acid from biomass sugars was investigated using recombinant Escherichia coli. The major problem been addressed is utilization of waste biomass for the production of succinic acid using metabolic engineering strategy. Here, methanol extract of Strophanthus preussii was used for fermentation. The process parameters were optimized. Glucose (9g/L), galactose (4g/L), xylose (6g/L) and arabinose (0.5g/L) were the major sugars present in the methanol extract of S. preussii. E. coli K3OS with overexpression of soluble nucleotide pyridine transhydrogenase sthA and mutation of lactate dehydrogenase A (ldhA), phosphotransacetylase acetate kinase A (pta-ackA), pyruvate formate lyase B (pflB), pyruvate oxidase B (poxB), produced a final succinic acid concentration of 14.40g/L and yield of 1.10mol/mol total sugars after 72h dual-phase fermentation in M9 medium. Here, we show that the maximum theoretical yield using methanol extracts of S. preussii was 64%. Hence, methanol extract of S. preussii could be used for the production of biochemicals such as succinate, malate and pyruvate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call