Abstract

We introduce additional coalescence factors for the production of strange baryons in a multiphase transport (AMPT) model in order to describe the enhanced production of multistrange hadrons observed in Pb-Pb collisions at $\rm \sqrt{s_{NN}}$ = 2.76 TeV at the Large hadron Collider (LHC) and Au+Au collisions at $\rm \sqrt{s_{NN}}$ = 200 GeV at Relativistic Heavy-Ion Collider (RHIC).This extended AMPT model is found to also give a reasonable description of the multiplicity dependence of the strangeness enhancement observed in high multiplicity events in $pp$ collisions at $\rm \sqrt{s}$ = 7 TeV and $p$-Pb collisions at $\rm \sqrt{s_{NN}}$ = 5.02 TeV. We find that the coalescence factors depend on the system size but not much on whether the system is produced from A+A or p+A collisions. The extended AMPT model thus provides a convenient way to model the mechanism underlying the observed strangeness enhancement in collisions of both small and large systems at RHIC and LHC energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.