Abstract

Nitric oxide (NO) is a powerful vasoactive product of endothelial origin, and one of its major effects is vasodilation, leading to hypotension. The role of NO in some complications of uremia is still debated. This study evaluated whether endothelial NO synthase activity could be modulated by the exposure of healthy blood to hemodialysis materials. In vitro hemodialysis sessions were performed with cuprophan and polymethylmethacrylate membranes. Blood samples from a healthy donor after recirculation for 0, 5, 15, 30, and 60 min were coincubated for 6 h with a murine endothelial cell line (t.End.1); mRNA for inducible NO synthase and enzyme activity, measured as (3H)citrulline produced from (3H)arginine, were detected. The release of interleukin (IL)-1 beta and tumor necrosis factor-alpha (TNF-alpha) from recirculating lymphomonocytes was measured, too. The NO synthase activity of endothelial cells was stimulated by blood dialyzed with cuprophan, peaking at 15 min (11-fold increase in comparison to the basal values), whereas polymethylmethacrylate was ineffective (P < 0.01 versus Cuprophan). Dialysis with cuprophan, but not with polymethylmethacrylate, induced in endothelial cells the expression of mRNA encoding for inducible NO synthase. The release of IL-1 beta and TNF-alpha after 6 h by recirculating lymphomonocytes paralleled the NO synthase activity profile in endothelial cells and was significantly higher after cuprophan exposure than after polymethylmethacrylate (P < 0.0001). In conclusion, the activity of endothelial NO synthase can be enhanced during the dialysis sessions by the interaction of lymphomonocytes with the membranes, possibly via TNF-alpha and IL-1 beta production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.